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The Hopf bifurcation behaviour of a symmetric rotor/seal system was investigated using
Muszynska's non-linear seal #uid dynamic force model. For a perfectly balanced system, the
instability from certain critical equilibrium positions is proved to be the result of Hopf
bifurcation and only the supercritical type is found for a speci"c rotor system using Poore's
algebraic criteria. Hence, a stable periodic orbit bifurcates from the critical equilibrium
position after the threshold speed is exceeded. Due to the dimensionless whirl frequency
being found to be close to �

�
over quite a large range of system parameters, the periodically

perturbed Hopf bifurcation in �
�
subharmonic resonance is dealt with for an imbalanced

rotor system. The bifurcation of the averaged system, obtained using the centre manifold
procedure and averaging method, is analyzed. The results show that non-synchronized whirl
of the imbalanced rotor can either be a quasi-periodic motion resulting from a Hopf
bifurcation, or a half-frequency whirl from period doubling bifurcation, determined by the
structure parameters of the system and operation conditions. Numerical simulation veri"es
the analytical results.

� 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

Since steam turbines and turbo-compressors are now designed for high performance, seal
#uid #ow can cause rotating machines to exhibit whirl/whip instability under certain
operating conditions [1]. The instability problem of rotor/seal system has been extensively
analyzed by linearizing the seal #uid forces around the equilibrium position of the rotor to
get the so-called dynamic coe$cients of seal [2, 3]. However, the nature of the whirling
motion after onset of instability cannot be analyzed using the linearized method. But
non-linear analysis of the problem is still rare due to the di$culties in obtaining the
analytical non-linear model of seal #uid force from the complicated #uid dynamics. To
overcome this di$culty, a simple model of non-linear #uid dynamic forces generated in the
seal (as well as in the bearing) was proposed by Muszynska, based on the results of a series
of experiments [4}6]. A parameter called the #uid average circumferential velocity ratio is
used to describe the characteristic of the #uid motion as a whole. The #uid "lm radial
sti!ness, damping and inertia e!ects are described by non-linear functions of the rotor
eccentricity ratio inside the seal. The model has been used in analyses, such as in antiswirl
022-460X/02/$35.00 � 2002 Elsevier Science Ltd. All rights reserved.



818 Q. DING E¹ A¸.
arrangements to prevent rotor/seal instability, which suggested that the model is correct
and e!ective [7].

In most cases, steady state instabilities occurring in mechanical systems are the result of
Hopf bifurcations. For rotor systems, such a case means that energy is transferred from
rotating motion into periodic whirl motion, so the latter can be sustained and is referred to
as a limit circle. Determining the direction of bifurcation and the stability of the limit circle
is clearly important for understanding the nature of the bifurcated motion (whirling). Much
work has been devoted to "nding simpli"ed techniques in this respect [8]. Among them,
a simple algebraic criterion established by Poore is perhaps the most useful [9]. The method
doesnot require the functions on the right side of a real n-dimensional, "rst order system of
autonomous ordinary di!erential equation (ODE) to be in any special form, nor is it
necessary to transform the functions to new variables. So use of the formula is relatively
straightforward. Myers used Poore's algebraic criteria to investigate the oil whirl of
a rotor/bearing system [10]. Both super- and subcritical bifurcations were found in di!erent
regions of parameter space of the system.

In rotor systems, imbalance of the rotor is inevitable but often at a small level. The
rotating inertial force provides a periodic excitation to the rotor in any transverse direction.
So a periodic perturbation to the Hopf bifurcation motion exists. Several authors [11}13]
have investigated the periodically perturbed Hopf bifurcation. The bifurcation modes are
described in detail by Gambaudo [12] using the PoincareH mapping method. In rotor
dynamics, Shaw and Shaw [14], on the basis of reference [10], studied the e!ect of
imbalance on oil whirl of rotor/bearing system by the centre manifold procedure and the
mapping method, and many bifurcation modes were obtained.

In this paper, a symmetric rotor/seal system is considered and Muszynska's non-linear
seal #uid dynamic force model is used. Firstly, the Hopf bifurcation of a perfectly balanced
system is studied using Poore's algebraic criteria to predict the direction of bifurcation
and the stability of the whirling orbit. Then, the periodically perturbed Hopf bifurcation
in �

�
subharmonic resonance is investigated with centre manifold theory and the averaging

method in the neighbourhood of the threshold speed. The averaged equation is analyzed
to "nd the types of occurrence of the bifurcation from the trivial solution, which
indicates the relationship of the type of the non-synchronised whirl with the system
parameters and operation conditions. The analytical results are veri"ed by numerical
simulation.

2. EQUATIONS OF MOTION

A model of the #uid dynamic forces F generated in seal (as well as in bearing ) of
turbo-machinery, based on results of a series of experiments, was proposed by Muszynska
[4}6] as
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where x and y are the displacements of the shaft centre, and � the angular rotating speed of
the rotor. �, the #uid average circumferential velocity ratio, is the key parameter which
describes the characteristic of the #uid motion as a whole. K, D and m

�
are the #uid "lm



Figure 1. Parameters of the Muszynska seal model (n
�
"2, n

�
"0)15).
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radial sti!ness, damping and inertia e!ects respectively. The ��D term in the "rst matrix on
the right-hand side of equation (1) is the cross-sti!ness, which is the most important
component a!ecting the rotor instability.

According to both experiments and numerical simulations [6, 15], K, D and � are the
non-linear functions of the rotor eccentricity, which can be expressed as

K"K
�
(1!e)���, D"D

�
(1!e)���, n

�
"�

�
, 1, �

�
,2, 3, �"�

�
(1!e)��,

0(n
�
(1.

where e"�z�/c, z"x#iy, i"�!1 and c is the radial clearance of the seal. The
expressions of K, D are given in reference [5], while � is suggested by the authors based on
the graphic presentation in reference [5]. The n

�
and n

�
values depend on the seal

considered. Figure 1 shows typical plots ofK, D and �. Let the eccentricity ratio e"0 in the
above functions, then the #uid dynamic forces described by equation (1) are linear and
the terms in three 2�2 matrices are usually referred to as dynamic coe$cients [2, 3], which
are generally e!ective for e)0)5. �

�
is near, but less than, 0)5 due to the in#uence of axial

#ow, secondary #ow, and friction losses. K
�
, D

�
and m

�
can be calculated using methods

such as Childs' formulas of dynamic coe$cients of turbulent annular seals based on Hirs'
lubrication equation [2].

Consider a symmetric Je!cott rotor mounted at both rigid ends. The seal #uid force is
assumed to be acting on the disk of the shaft, as shown in Figure 2. The equations of motion
of the rotor are
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wherem and r
�
are the mass and radius of imbalance of the disk andK

�
, D

�
the sti!ness and

external damping coe$cients respectively. By introducing the following dimensionless
variables: xN "x/c, yN "y/c, tN "�t, the dimensionless equations of the rotor/seal systemmay
be rewritten by combining equations (1) and (2) such that (dropping all overbars for



Figure 2. Rotor/seal model.
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convenience)
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3. HOPF BIFURCATION OF THE BALANCED SYSTEM

3.1. EQUILIBRIUM POSITION AND STABILITY

The static equilibrium position of the perfectly balanced rotor (i.e., �"0 in equation (3)),
(x, xR , y, yR )

�
"(x

�
, 0, y

�
, 0), which depends on the rotating speed �, can be obtained by

setting all derivative terms in equations (3) to be zero, thus
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Figure 3. Stability chart.
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the eight coe$cients a
�
, b

�
( j"1, 2, 3, 4) in A(�) are functions of x

�
, y

�
(Appendix C), while

f
��

and f
��

are higher order terms of the expansion. Obviously, X"0 is the static
equilibrium position of equation (5).

The eigenvalues of the matrix A(�) satisfy the characteristic equation

��#a��#b��#c�#d"0, (6)
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Then the stability of X"0 is determined by the roots of equation (6). Due to a"2

(D
�
#D)/(M�)'0, a pair of pure imaginary roots �

���
"$i�

�
"$i�c/a can be obtained

from equation (6) when the conditions

(c/a) (c/a!b)#d"0, c/a!b(0, c'0. (7)

are satis"ed whilst the other two roots of equation (6) have negative real parts:
�
���

"!�
�
$i�

�
, �

�
'0. By Routh's criterion, the rotor will lose its stability when

�*�
�
, where �

�
is the solution of the "rst equation of equation (7) and de"ned as the

threshold speed. In other words, when the threshold speed is exceeded, the rotor/seal system
becomes unstable.

Suppose m
�
"0 (for m

�
�m), one gets the threshold speed and the dimensionless whirl

frequency (the ratio of whirl speed to the threshold speed):
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where ( )�"�( )/�e. e
�
is known as the critical eccentricity ratio and has relationship with

mass m as shown in Figure 3. Detailed values can also be found in Table 1. �
�
and �

�
are

calculated as functions of e
�
as shown in Figure 4. As mentioned above, the instability of the



TABLE 1

Results of Hopf bifurcation from Poore1s criterion

m(kg) e
�

	� (0)�10� 
�(0) Re c
�
(0)�10� Im c

�
(0)�10�

2000 0)19 0)026 0)049 !0)01 !0)01
3000 0)29 0)034 0)074 !0)03 !0)02
4000 0)38 0)050 0)160 !0)08 !0)04
5000 0)47 0)069 0)475 !0)33 !0)12
6000 0)56 0)100 1)274 !1)27 !0)35
7000 0)64 0)134 3)067 !4)12 !0)05
8000 0)71 0)168 3)883 !6)53 1)28
9000 0)77 0)196 2)931 !5)74 1)93
10 000 0)81 0)217 2)235 !4)86 1)83
11 000 0)83 0)225 1)875 !4)22 1)68

Figure 4. The relationship between the critical eccentricity and mass.
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rotor/seal system is mainly a!ected by the cross sti!ness ��D. Because there is di!erence
between the ascending rate of D and descending rate of � as the rotor's eccentricity is
increased, the change of the threshold speed �

�
with e

�
can either increase or decrease. The

minimum occurs when e
�
"0)6}0)75. When e

�
exceeds 0)8, �

�
increases very rapidly, which

means that the occurrence of instability in heavy rotors is rare (similar to rotor/bearing
systems, the rotor is always stable for e

�
'0)8 [10]). �

�
is near 0)5 for a large range of values

of e
�
but decreases as e

�
gets larger than 0)8. This behaviour re#ects the decrease of the

average circumferential velocity of the #uid inside the seal.

3.2. HOPF BIFURCATION AND NUMERICAL SIMULATION

Let �"�!�
�
be a small parameter, which measures the deviation of � away from �

�
.

So (X, �)"(0, 0) is the critical static equilibrium position of equation (5). The eigenvalues of
A(�

�
#�) are �

���
"	 (�)$i� (�) and �

���
"!�

�
(�)$i�

�
(�) with 	 (0)"0, � (0)"�

�
and

�
�
(0)'0. Table 1 indicates that 	�(0)"(d	/d�)�	�

'0 in the displayed range of value of e
�
.

Therefore, the conditions of the Hopf bifurcation are satis"ed (Appendix A). The direction
of bifurcation and the stability of the bifurcated periodic orbit can be determined using



Figure 5. Supercritical Hopf bifurcation.
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Poore's algebraic formulas (Appendix B). From Table 1 one sees that supercritical
bifurcation will take place for �'0 due to 
� (0)'0 and 	�(0)'0, and it means that the
small-amplitude periodic whirl with dimensionless frequency �

�
exists when the threshold

speed �
�
is exceeded (Figure 5). Such a motion is often referred to as lower-frequency

self-excited vibration for �
�
(1 indicating the whirl speed is lower than the rotor's rotating

speed.
To verify the theoretical results, a numerical investigation using the Runge}Kutta

algorithmwas carried out. Takingm"3000 kg, one "nds that the eccentricity e
�
"0)29 and

�
�
"371 rad/s (from Table 1 and Figure 4). The transient motion of the rotor at di!erent

speeds and initial conditions are shown in Figure 6 in which the initial speeds in two
directions are always set as zero. Figure 6(a) illustrates the static equilibrium position (left)
and the transient motion starting from two positions (right) when �"365 rad/s. Below the
threshold speed, the rotor is stable and spirals into the equilibrium position in dependent of
the initial condition. Above the threshold speed, a stable whirl orbit, also independent of the
initial conditions, should appear according to the Hopf bifurcation theory. The numerical
results support the theoretical prediction, as shown in Figure 6(b}d). The initial conditions
are chosen to be either close to the critical static equilibrium position (0, !0)2) and also far
from it (1, 0). Both conditions result in identical "nal whirl orbits for the same speed. So the
whirl orbit is stable. The amplitude of the stable orbit increases steadily as the rotor speed is
increased. Eventually, the increase of the orbit amplitude will result in rubbing between the
rotor and seal, at well above its threshold speed, due to loss of ability of bearing the weight
by the #uid inside the seal. In this case the seal #uid force model is invalid [5].

4. PERIODICALLY PERTURBED HOPF BIFURCATION IN �
�
SUBHARMONIC RESONANCE

OF THE IMBALANCED SYSTEM

4.1. REDUCTION AND AVERAGING

For the imbalanced system (i.e., �O0 in equation (3)), the perturbation equations about
the static equilibrium position ( )

�
determined in equation (4) are deduced as

X"A(�)X#F (�,X)#���(t), (9)

where ���(t)"�� (0, cos t, 0, sin t)� is a periodic perturbation term. Generally, the
imbalance � is of small level, which leads to a periodical perturbation to the Hopf



Figure 6. Whirl orbit of the rotor in di!erent speeds and from di!erent initial positions (indicated by *): (a)
�"365 l/s; (b) �"380 l/s; (c) �"400 l/s; (d) �"460 l/s.
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bifurcation of the system when operating in the neighbourhood of the threshold speed �
�
.

Due to the dimensionless whirl frequencies �
�
being close to �

�
over quite a large range of the

system parameters, there exists a possibility of a subharmonic resonance of order 2 for the
bifurcation motion (non-synchronized whirl).
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Letting �"�
�
#� and expanding A and F in equations (9) up to order 1 of �, one gets
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matrices with non-linear polynomials.
According to centre manifold theory [16], the two-dimensional centre manifold
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�� sin t and �� cos t represent the forced vibration induced by the mass imbalance of the
disk.

Taking the derivative of equation (12), and considering equation (11), one gets the
equations
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The condition for obtaining approximated H up to order 2 can be deduced from the above
equation as
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where C��
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) represents the quadratic terms in C

�
(y

�
, y

�
). The coe$cients d

	
and

e
	
( j"1}7) in equation (12) can be obtained by solving equation (13). Substituting the

determined H into equation (11), one gets the governing equations of dynamics on the
centre manifold (after transforming the linear parts into Jordan canonical form)
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where H
�
( j"1, 2) is a linear polynomial of u

�
and u

�
with coe$cients being the functions

of t with period 2, which represents the e!ects of the imbalance on the Hopf bifurcation
(non-synchronized whirl) of the rotor through parametric excitation. N��

�
and N��

�
are

quadratic and cubic polynomials of u
�

and u
�

with N��
�

(u, 0)O0 and N��
�

(u, 0)O0,
respectively, and BM is a constant 2�2 matrix.

For the study of subharmonic resonance of order 2, we have �
�
"1/2#��, where � is

a positive small parameter and � a detuning parameter. �� measures the deviation of
�

�
away from �

�
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obtained equations from �
�
, �

�
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a set of equations in standard form, up to O(�), is obtained (dropping all overbars for
convenience) as
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whereH� andH�� contain constant terms (including �) and periodic terms with period 2, B�
and B�� periodic terms only and N �

�
, N ��

�
quadratic and cubic polynomials of r respectively.

The averaged equations in subharmonic resonance of order 2 can be obtained by applying
the averaging operator among a period 2 to the right side of equations (15) to the second
approximation (in order to include the in#uence of quadratic non-linear terms) as
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where; ('0) and � are constants. Re c
�
(�
�
, �) and Im c

�
(�
�
, �), resulting from the non-linear

autonomous terms in equation (15), are equal to Re c
�
(�) and Im c

�
(�) in equations (A3)

(Appendix A), respectively, due to the equivalence of the averaging method and normal
form method [17]. By expansion up to order 1 of �, one gets
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where Re c
�
(1/2, 0) and Im c

�
(1/2, 0) have been obtained by Poore's criteria (Table 1).

4.2. STABILITY AND BIFURCATION OF THE AVERAGED SYSTEM

The stationary responses of the averaged equations (16) are determined by setting
rR "�R "0, which yields (from the leading order terms)

A
�
r�#A

�
r�#A

�
"0, r"0, (17, 18)

where

A
�
"R�#I�, A

�
"2[R	�(0)#I� �(0))�#�],

A
�
"(	� (0)�)�#(�� (0)�#�)�!(�;)�, R"Re c

�
(1/2, 0), I"Im c

�
(1/2, 0).

The non-trivial solutions of equation (17) are

r
���

"(!A
�
$��)���/�2A

�
. (19)

where

�"A�
�
!4A

�
A

�
"4�![R� �(0)!I	�(0))�#R�]�#A

�
(�; )��.

By examining the non-trivial solutions of equation (19), equation (17) has

(1) one positive real root r
�
provided A

�
(0

(	�(0)�)�#(��(0)�#�)�((�;)�, (20)

(2) two positive real root r
�
, r

�
provided A

�
(0, !4A

�
A

�
)0 and �*0:

[R	�(0)#I� � (0)]�#I�(0, (	�(0)�)�#(��(0)�#�)�*(�;)�,

A
�
;���*[(R��(0)!I	�(0))�#R�]�. (21)

4.2.1. Stability of the trivial solution

Introducing z
�
"r cos(�#�), z

�
"r sin(�#�), equation (16) can be transformed as

zR
�
"�[	� (0)�z

�
#(�;!�� (0)�!�)z

�
#(z�

�
#z�

�
) (Rz

�
!Iz

�
)],

zR
�
"�[�;#��(0)�#�)z

�
#	�(0)�z

�
#(z�

�
#z�

�
) (Rz

�
!Iz

�
)]. (22)

The linear parts of equation (22) correspond to the linear variational equations about the
trivial solution, r"0, and the corresponding characteristic equation is

��!2	� (0)��#(	�(0)�)�#(��(0)�#�)�!(�;)�"0. (23)



Figure 7. Stability boundary of the trivial solutions of equation (16) (��(0)'0).
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The trivial solution is stable if the following conditions hold (	� (0)'0 from Table 1):

�(0, (	� (0)�)�#��(0)�#�)�'(�;)�. (24)

The second equation of equation (24) indicates the region outside the elliptic cone shown in
Figure 7 (if �� (0)(0, one should only replace � by !�). Fixing �, one gets the stability
boundary for trivial solution in the (�, �) plane as shown in Figure 7. There are two
important points in the plane, namely

B :�"!

���(0)
(	� (0))�#(��(0))�

, �"

��	� (0) �

;�(	�(0))�#�� (0))�
, C : �"0, �"���/; ,

obviously, �
�
'�

�
. In region I, the trivial solution is stable. There are three ways for the

trivial solution to lose its stability, depending on the solution of the characteristic equation
(23):

(1) Along OC, a Hopf bifurcation (a pair of pure imaginary eigenvalues);

(2) along BC, a pitch-fork bifurcation (a single zero eigenvalue);
(3) at point C, a global bifurcation (two zero eigenvalues).

The stability analysis of non-trivial solution indicates that r
�
is always unstable. r

�
is

stable but will exhibit Hopf bifurcation (secondary bifurcation) at a critical value of � under
some conditions. A saddle-type bifurcation happens along �"0 where r

�
and r

�
coalesce.



Figure 8. Bifurcation of equation (16): **, stable solutions; } } } , unstable solution.
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4.2.2. Bifurcation of the averaged response

From equations (20), (21) and (24), a real solution and two real solutions of the equation
(17) exist in instability region III and the shaded region of Figure 8 respectively (G is the
intersection point of three margin lines: A

�
"0, A

�
"0 and �"0). The occurrence of

non-trivial solutions of the bifurcation equation (17) means a non-synchronized whirl to the
imbalanced system. Two paths for the occurrence of bifurcation as � is increased, for
various levels of �, are presented in Figure 8.

(1) Along line 1}1, the trivial solution loses its stability through Hopf bifurcation at
�"0. For the original unbalanced system (2), the bifurcation results in a quasi-
periodic motion in which the ratio of the whirling frequency to the rotating frequency
is incommensurable.

(2) Along lines 2}2, 3}3 and 4}4, the points labelled i
�
, i

�
,2, i

�
in Figure 8(b) correspond

to those in Figure 8(a). The occurrence of non-trivial solution of the averaged
equation (16) results in a period-doubling motion in which the above ratio is strictly
�
�
, known as &&half-frequency whirl'', to the original imbalanced system. It should be

noted that � is less than 0 when it arrives at AB, i.e., �(�
�
, which means the



Figure 9. Orbits of non-synchronized motion of the rotor/seal system: (a) quasi-periodic motion (r
�
"0)1 mm,

�"378 rad/s'�
�
); (b) period-doubling motion (r

�
"0)4 mm) �"355 rad/s(�

�
).
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period-doubling bifurcation occurs before the threshold speed determined by linear
model is exceeded. From Figure 7, one also "nds that the bifurcation occurs earlier as
� is increased, or ��� decreased. This suggests two ways to delay or avoid the
occurrence of this type of bifurcation (the instability for the normal motion) in
the actual working range: (1) balancing the rotor carefully to decrease the level of the
imbalance; (2) designing the parameters of the rotor system to �

�
cause to be as far

way from �
�
as possible (i.e., increase ���).

Taking m"3000 kg, one "nds from Table 1 and Figure 4 that �
�
"371 rad/s and

�
�
+0)495. The Runge}Kutta algorithmwas used to simulate the motion of the imbalanced

system (2). For r
�
"0)1 mm, the motion of the system is always periodic before the rotor

speed exceeds its threshold value and then quasi-periodic motion is found as shown in
Figure 9(a) when �"378 rad/s ('�

�
). For r

�
"0)4 mm, the period-doubling motion is

found before the threshold speed is exceeded as shown in Figure 9(b) when �"355 rad/s
((�

�
).

5. CONCLUSIONS

The bifurcation behaviour of a symmetric rotor/seal system has been investigated in this
paper. For the balanced system, the instability from certain critical equilibrium positions
was proved to be the result of Hopf bifurcation. Only supercritical bifurcation has been
found for the speci"c rotor system using Poore's algebraic criteria. So a stable periodic orbit
bifurcates from the critical steady state position. The amplitude of the whirling orbit
increases gradually as the rotor speed is increased and the dimensionless whirl frequency
was found to be close to �

�
over quite a large range of the system parameters. The study on

the �
�

subharmonic resonance in the neighbourhood of the threshold speed for the
imbalanced system shows that the non-synchronized whirl can either be a quasi-periodic
motion resulting from Hopf bifurcation, or a half-frequency whirl from period-doubling
bifurcation. The level of imbalance, the deviation of the dimensionless whirl frequency away
from �

�
and the rotating speed of the rotor determine which one can be the actual response of

the system.
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APPENDIX A: HOPF BIFURCATION THEORY

Consider the di!erential equation

dx/dt"F(x, �), F :R��RPR�, n*2, F3C� . (A1)

where � is a real parameter. Assume that:

(1) x"a� is an equilibrium position of equation (A1), that is F (a�, 0)"0.
(2) The Jacobian matrix A (�)"D

�
F (a�, �) has a pair of eigenvalues 	(�)$i� (�)

which satisfy 	 (0)"0, �(0)"�
�
'0 and (n!2) eigenvalues with non-zero real

parts.
(3) F is di!erentiable in a neighbourhood of (x, �)"a�, 0).
(4) 	�(0)"(d	/d�) ��	�

O0, where 	(�)$i�(�) denotes that eigenvalue of
A(�)"D

�
F (a�, �) is a continuous extension of $i�

�
.

Under these conditions, there will be a non-constant periodic orbit bifurcating from
(x, �)"(a�, 0). To analyze the bifurcation solution, equation (A1) is reduced using centre
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manifold procedure to the two dimension system as

y�"A(�)y#F ��(y)#F��(y)#h.ot. (A2)

where y"(y
�
, y

�
)� is real variables, F� � (y) is the quadratic ( j"2) and cubic ( j"3)

polynomials of y
�
, y

�
. The PoincareH }Birkho! normal form of equation (A2) in polar

co-ordinates is

r�"	 (�)r#

�
�	�

Re c
�
(�)r����#O(r���).

��"�(�)#

�
�	�

Im c
�
(�)r��#O(r���). (A3)

The non-trivial solution of equation (A3) is

r"�, �(�)"�
�
��#�

�
��#2, ¹ (�)"(2/�

�
) (1#�

�
��#�

�
��#2).

�
�
"!Re c

�
(0)/	�(0), �

�
"!(1/�

�
) [�� (0)�

�
#Im c

�
(0)],

where ¹(�) is the period of the solution.

APPENDIX B: POORE'S ALGEBRAIC FORMULAS

Assume the derivative (d	/d�) ��	�
O0 and the remaining (n!2) eigenvalues of

A(0)"D
�
F(a�, 0) have negative real parts, the direction of bifurcation (non-degenerated)

and the stability of the periodic orbit can be determined by the result of the following
algebraic formula:

8	�(0)
� (0)#i8(��(0)
�(0)#�
�
��(0))"!uF

���
vvv� #2uF

��
v(A�)��F

��
vv�

#uF
��

v� (A�!i2�
�
I)��F

��
vv . (B1)

where A�"A(0); u and v, having been normalized by the requirement uv"1, are the left
and right eigenvectors for the eigenvalues #i�

�
of A� respectively; F

��
"D

��
F(a�, 0) and

F
���

"D
���

F (a�, 0) are derivative matrices of F.I is the identity matrix.
The right side of equation (B1) includes several matrix products. For example, the "rst

term is

uF
���
vvvN "

�
�
�	�
�u�

�
�

�����	�

��F �

�x
�
�x

�
�x

�

v
�
v
�
v�
�� .

For 	�(0)'0, supercritical bifurcation takes place if 
�(0)'0, whereas subcritical
bifurcation occurs if 
�(0)(0. In the former case, a stable periodic orbit bifurcates from
(x, �)"(a�, 0) for �'0; in the latter case, an unstable orbit bifurcates from (x, �)"(a�, 0)
for �(0.

In addition, due to 
�(0)"�
�

and �� (0)"�
�
, one obtains Re c

�
(0)"!
�(0)	�(0) and

Im c
�
(0)"�� (0)
�(0)#�

�
��(0).
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APPENDIX C: COEFFICIENTS OF A (�)

a
�
"

1

��
[K

�
#(k

�
x
�
#1)K]#

1

�
(t
�
#k

�
)Dy

�
�!(1#2xt

�
)m

�
��, a

�
"

1

�
(D

�
#D).

a
�
"

1

��
k
�
Kx

�
#

1

�
[(t

�
#k

�
)y

�
#1]D�!2x

�
t
�
m

�
��, a

�
"2m

�
�.

b
�
"

1

��
k
�
Ky

�
!

1

�
[(t

�
#k

�
)x

�
#1]D�!2y

�
t
�
m

�
��, b

�
"!a

�
.

b
�
"

1

��
[K

�
#(k

�
y
�
#1)K]!

1

�
(t
�
#k

�
)x

�
D�!(2y

�
t
�
#1)m

�
��, b

�
"a

�
.

where

e
�
"�x�

�
#y�

�
, K"K

�
(1!e�

�
)�� , D"D

�
(1!e�

�
)��, �"�

�
(1!e

�
)� ,

k
�
"2nx

�
/(1!e�

�
) , k

�
"2ny

�
/(1!e�

�
) , t

�
"bx

�
/e

�
(1!e

�
),

t
�
"!by

�
/e

�
(1!e

�
) .
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